Targeting splenic hematopoietic stem cells in cardiovascular disease
نویسندگان
چکیده
Inflammation plays a crucial role in cardiovascular disease. For example, inflammatory monocytes, after being recruited to atherosclerotic plaques, secrete proteinases that erode the fibrous cap. This may lead to plaque rupture and subsequent myocardial infarction (MI). Patients with acute myocardial infarction have elevated levels of blood leukocytes [1]. Peripheral blood leukocyte count after MI correlates with in-hospital mortality, underscoring role of inflammatory cells in post-MI myocardial remodeling. The spleen provides steady flow of leukocytes to the infarct and atherosclerotic plaques. Since monocyte turnover at the sites of inflammation is very high [2], hematopoietic stem and progenitor cells (HSPC) differentiate into myeloid cells to keep up with the increased demand. MI drives splenic HSPC into the cell cycle [3] and induces their lineage differentiation. Subsequent imaging studies [4, 5] suggested splenocyte proliferation after acute myocardial infarction in patients. Although splenic myelopoiesis exaggerates inflammation in cardiovascular disease, the components of splenic hematopoietic niche are not well understood. Since macrophages play a major role in bone marrow HSC maintenance, we investigated if macrophages regulate hematopoiesis in the spleen [6]. Toward this end, we developed lipidoid nanoparticles containing siRNA against CD115, the receptor for MCS-F, which is involved in macrophage differentiation, proliferation and survival. CD115 knockdown significantly reduced splenic macrophage numbers in mice injected with the Toll like receptor ligand lipopolysaccharide. Concomitantly, splenic HSC, HSPC and granulocyte macrophage progenitor numbers were diminished after knocking down CD115. Levels of VCAM-1, an HSC retention factor, were reduced in the spleen; however, HSC proliferation and apoptosis were unaltered, indicating impaired retention of splenic HSC after CD115 knockdown. Reduced splenic retention was in line with elevated HSPC levels in the blood after siCD115 treatment. Additionally, we found similar diminished splenic HSC numbers after depletion of splenic macrophages in CD169-iDTR mice with diphtheria toxin, bolstering the hypothesis that macrophages maintain splenic HSC. CD115 knockdown curtailed myeloid cell supply to the infarct in mice on day 4 after coronary ligation. Furthermore, the treatment also abated inflammation in atherosclerotic lesions in ApoE-/-mice fed with high fat diet. This reduction of inflammation was likely a consequence of mitigated extramedullary myelopoiesis due to impaired HSC maintenance after CD115 knockdown. In agreement with reduced inflammation, the treatment reduced plaque size and necrotic core area, and thickened fibrous cap. These are features of stable atherosclerotic plaques. Since VCAM-1 was the only HSC retention factor that was downregulated in splenocytes after CD115 knockdown, we investigated which …
منابع مشابه
The effect of bone marrow-derived mesenchymal stem cells to induce PD-L1 molecule on splenic lymphocytes
Background: Mesenchymal stem cells are non-hematopoietic stromal cells that are used in the treatment of many chronic and autoimmune diseases by modulating the immune system. Due to the limitations of using autologous mesenchymal stem cells, the use of allogeneic stem cells is a promising therapeutic approach in the treatment of immunological disorders. This study aimed to investigate the abili...
متن کاملSignaling pathways involved in chronic myeloid leukemia pathogenesis: the importance of targeting Musashi2-Numb signaling to eradicate leukemia stem cells
Objective(s): Chronic myeloid leukemia (CML) is a myeloid clonal proliferation disease defining by the presence of the Philadelphia chromosome that shows the movement of BCR-ABL1. In this study, the critical role of the Musashi2-Numb axis in determining cell fate and relationship of the axis to important signaling pathways such as Hedgehog and Notch that are essential ...
متن کاملEvaluation of Serum Interleukin-21 and HLA-C1 Polymorphism in Pediatrician Hematopoietic Stem Cell Transplantation for Early Diagnosis of Acute Graft-Versus-Host Disease
Background: Allogenic hematopoietic stem cell transplantation (HSCT) is a strategy used for treatment of different malignant diseases. However, success of allo-HSCT can be hampered by graft-versus-host-disease (GVHD). Natural killer (NK) cells may play an important role in activating antigen presenting cells and subsequent activation of T cells. The main purpose of this study was the evaluation...
متن کاملDifferentiation of Mouse Embryonic Stem Cells into Hematopoietic Cells
Purpose: Differentiation of Mouse embryonicstem cells into Hematopoietic cells. Materials and Methods: In this study, we used EB formation system for Hematopoietic differentiation of mouse embryonic stem cell (Royan B1) in suspension culture. EBs cultured in medium with Hematopoietic inducer cytokines (SCF, TPO, GMCSF, IL3, Flt3 and EPO) .presence of hematopoietic differentiated cell assessed ...
متن کاملStem Cells Application in Modeling of Human Genetic Diseases
The use of animal models in modeling of human genetic disease has many advantages. In some cases, however, this method may not be applicable due to some limitations, such as differences in tissue composition, anatomy and physiology of humans and animals. Isogenic human disease models are a population of cells that are selected or engineered to model a specific genetic disease, in vitro. They ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015